The early-stage research tested the delivery and safety of the new implantable catheter design in two sheep to determine its potential for use in diagnosing and treating diseases in the brain.
If proven effective and safe for use in people, the platform could simplify and reduce the risks associated with diagnosing and treating disease in the deep, delicate recesses of the brain.
It could help surgeons to see deeper into the brain to diagnose disease, deliver treatment like drugs and laser ablation more precisely to tumours, and better deploy electrodes for deep brain stimulation in conditions such as Parkinson’s and epilepsy.
Senior author Professor Ferdinando Rodriguez y Baena, of Imperial’s Department of Mechanical Engineering, led the European effort and said: “The brain is a fragile, complex web of tightly packed nerve cells that each have their part to play. When disease arises, we want to be able to navigate this delicate environment to precisely target those areas without harming healthy cells.
“Our new precise, minimally invasive platform improves on currently available technology and could enhance our ability to safely and effectively diagnose and treat diseases in people, if proven to be safe and effective.”
Developed as part of the Enhanced Delivery Ecosystem for Neurosurgery in 2020 (EDEN2020) project, the findings are published in PLOS ONE.
Stealth surgery
Source: Read Full Article