Machine learning gives nuanced view of Alzheimers stages

A Cornell-led collaboration used machine learning to pinpoint the most accurate means, and timelines, for anticipating the advancement of Alzheimer’s disease in people who are either cognitively normal or experiencing mild cognitive impairment.

The modeling showed that predicting the future decline into dementia for individuals with mild cognitive impairment is easier and more accurate than it is for cognitively normal, or asymptomatic, individuals. At the same time, the researchers found that the predictions for cognitively normal subjects is less accurate for longer time horizons, but for individuals with mild cognitive impairment, the opposite is true.

The modeling also demonstrated that magnetic resonance imaging (MRI) is a useful prognostic tool for people in both stages, whereas tools that track molecular biomarkers, such as positron emission tomography (PET) scans, are more useful for people experiencing mild cognitive impairment.

The team’s paper, “Machine Learning Based Multi-Modal Prediction of Future Decline Toward Alzheimer’s Disease: An Empirical Study,” published Nov. 16 in PLOS ONE. The lead author is Batuhan Karaman, a doctoral student in the field of electrical and computer engineering.

Alzheimer’s disease can take years, sometimes decades, to progress before a person exhibits symptoms. Once diagnosed, some individuals decline rapidly but others can live with mild symptoms for years, which makes forecasting the rate of the disease’s advancement a challenge.

“When we can confidently say someone has dementia, it is too late. A lot of damage has already happened to the brain, and it’s irreversible damage,” said senior author Mert Sabuncu, associate professor of electrical and computer engineering in the College of Engineering and of electrical engineering in radiology at Weill Cornell Medicine.

Source: Read Full Article